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1. Introduction

Formal systems are not always explicitly connected to how they operate in practice. Lawvere
theories [18] are an excellent formalism for describing algebraic structures obeying equational laws,
but they do not specify how to compute in such a structure, for example taking a complex expression
and simplifying it using rewrite rules.

In a Lawvere theory the objects are types and the morphisms are terms; however there are no
relations between terms, only equations. The process of computing one term into another should
be given by hom-objects with more structure. In operational semantics, program behavior is often
specified by labelled transition systems, or labelled directed graphs [28]. The edges of such a graph
represent rewrites. We can use an enhanced Lawvere theory in which, rather than merely sets of
morphisms, there are graphs or perhaps categories.

To be clear, this is certainly not a new idea. Using enriched Lawvere theories for operational
semantics has been explored in the past. For example, category-enriched theories have been studied
by Seely [32] for the λ-calculus, and poset-enriched ones by Ghani and Lüth [21] for understanding
“modularity” in term rewriting systems. They have been utilized extensively by Power, enriching
in ω-complete partial orders to study recursion [29] – in fact, there the simplified “natural number”
enriched theories which we explore were implicitly considered.

In the context of these works, the purpose of the present paper is to provide a simple, general
exposition of enriched theories: we hope to familiarize computer scientists with enriched category
theory, and prove some basic results to show that one does not need to leave the nice computational
world of cartesian closed categories to enjoy the benefits of enrichment.

For an enriching category V, we take a V-theory to be a V-enriched Lawvere theory with nat-
ural number arities. There is a “spectrum” of enriching categories which allow us to examine the
semantics of term calculi at various levels of detail. We discuss how functors between enriching
categories induce change-of-base 2-functors between their 2-categories of enriched categories, and
we show that functors preserving finite products induce change-of-semantics: that is, they map
theories to theories and models to models. Our main examples arise from this chain of adjunctions:
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The right adjoints here automatically preserve finite products, but the left adjoints do as well, and
these are more important in applications:

Change of base along FC maps small-step to big-step operational semantics.
Change of base along FP maps big-step to full-step operational semantics.
Change of base along FS maps full-step operational semantics to denotational semantics.
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2. Lawvere Theories

Algebraic structures are traditionally treated as sets equipped with operations obeying equations,
but we can generalize such structures to live in any category with finite products. For example,
given any category C with finite products, we can define a monoid internal to C to consist of:

an object M
an identity element e : 1→M
and multiplication m : M2 →M

obeying the associative law m ◦ (m×M) = m ◦ (M ×m)
and the right and left unit laws m ◦ (e× idM ) = idM = m ◦ (idM × e).

Lawvere theories formalize this idea. For example, there is a Lawvere theory Th(Mon), the category
with finite products freely generated by an object t equipped with an identity element e : 1→ t and
multiplication m : t2 → t obeying the associative law and unit laws listed above. This captures the
“Platonic idea” of a monoid internal to a category with finite products. A monoid internal to C
then corresponds to a functor µ : T→ C that preserves finite products.

In more detail, let N be any skeleton of the category of finite sets FinSet. Because N is the free
category with finite coproducts on 1, Nop is the free category with finite products on 1. A Lawvere
theory is a category with finite products T equipped with a functor τ : Nop → T that is bijective on
objects and preserves finite products. Thus, a Lawvere theory is essentially a category generated by
one object τ(1) = t and n-ary operations tn → t, as well as the projection and diagonal morphisms
of finite products.

For efficiency let us call a functor that preserves finite products cartesian. Lawvere theories
are the objects of a category Law whose morphisms are cartesian functors f : T → T′ that obey
fτ = τ ′. More generally, for any category with finite products C, a model of the Lawvere theory T
in C is a cartesian functor µ : T→ C. The models of T in C are the objects of a category Mod(T,C),
in which the morphisms are natural transformations.

Making a Lawvere theory from a “sketch” of operations and equations is just like the presentation
of an algebra by generators and relations: we form the free category with finite products on the
data given, and impose the required equations. The result is a category whose objects are powers
of M , and whose morphisms are composites of products of the morphisms in Th(Mon), projections,
deletions, symmetries and diagonals. In §4 we see that this construction is actually given by the
Cat-theory for categories with finite products.

3. Enrichment

To allow more general semantics, we now turn to Lawvere theories that have hom-objects rather
than mere hom-sets. To do this we use enriched category theory [16] and replace sets with objects
of a cartesian closed category V, called the “enriching” category or “base”. A V-enriched category
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or V-category C is:

a collection of objects Ob(C)
a hom-object function C(−,−) : Ob(C)×Ob(C)→ Ob(V)

composition morphisms ◦a,b,c : C(b, c)× C(a, b)→ C(a, c) ∀a, b, c ∈ Ob(C)
identity-assigning morphisms ia : 1V → C(a, a) ∀a ∈ Ob(C)

such that composition is associative and unital. A V-functor F : C→ D is:

a function F : Ob(C)→ Ob(D)
a collection of morphisms Fab : C(a, b)→ D(F (a), F (b)) ∀a, b ∈ C

such that F preserves composition and identity. A V-natural transformation α : F ⇒ G is:

a family αa : 1V → D(F (a), G(a)) ∀a ∈ Ob(C)

such that α is “natural” in a. There is a 2-category VCat of V-categories, V-functors, and V-natural
transformations.

We can construct new V-categories from old by taking products and opposites in an obvious way.
There is also a V-category denoted V with the same objects as V and with hom-objects given by
the internal hom:

V(v, w) = wv ∀v, w ∈ V.

We can generalize products and coproducts to the enriched context. Given a V-category C, a
V-product of an n-tuple of objects b1, . . . , bn ∈ Ob(C) is an object b equipped with V-natural
isomorphism

(1) C(−, b) ∼=
n∏
i=1

C(−, bi).

If such an object b exists, we denote it by
∏n
i=1 bi. This makes sense even when n = 0: a 0-ary

product in C is called a V-terminal object and denoted as 1C.
Whenever V is cartesian closed, the finite products in V are also V-products in V; this mainly

amounts to saying

(u× v)w ∼= uw × vw and 1wV
∼= 1V.

Conversely, any finite V-product in V is also a product in the usual sense. In a general V-category
C, it makes no sense to say a V-product is a product in the usual sense. However, the V-natural
isomorphism in Eq. (1) gives rise to a morphism

πi : 1V → C(b, bi)

for each i, defined as the composite

1V
ib−→ C(b, b)

∼−→
n∏
i=1

C(b, bi) −→ C(b, bi).

These morphisms πi serve as substitutes for the projections from b to bi. They are “elements” of
the hom-objects C(b, bi), where an element of v ∈ Ob(V) is a morphism from 1V to v. Elements
of hom-objects behave much like morphisms for C. For example, we can define a morphism

pi : C(a, b)→ C(a, bi),

which acts like composition with πi as follows:

C(a, b)
∼−→ 1V × C(a, b)

πi×1−→ C(b, bi)× C(a, b)
◦a,b,bi−→ C(a, bi).
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This morphism is V-natural in a, and the isomorphism in Eq. (1) has components given by the
morphisms pi.

We say that a V-functor F : C → D preserves V-products if for every b =
∏n
i=1 bi in C, the

V-natural transformations

F (pi) : D(−, F (b))→ D(−, F (bi))

are the components of a V-natural isomorphism

D(−, F (b)) ∼=
n∏
i=1

D(−, F (bi)),

and similarly for V-coproducts.
A bit more subtly, generalizing the product and internal hom of V, a V-category C can have

“tensors” and “powers” (which are sometimes called “copowers” and “cotensors”). Given a ∈ Ob(C)
and v ∈ Ob(V), we say an object v · a ∈ Ob(C) is the tensor of a by v if it is equipped with
isomorphisms

C(v · a, b) ∼= C(a, b)v

V-natural in b. In the special case V = Set this forces v · a to be the v-fold coproduct of copies of a:

v · a =
∑
i∈v

a.

Similarly, given b ∈ Ob(C) and v ∈ Ob(V), we say an object bv ∈ Ob(C) is a power of b by v if it
is equipped with isomorphisms

C(a, bv) ∼= C(a, b)v

V-natural in a. In the special case V = Set this forces bv to be the v-fold product of copies of b:

bv =
∏
i∈v

b.

As with V-products, the V-natural isomorphism of powers gives rise to “projections” given by

εb,v : 1V
ibv−→ C(bv, bv)

∼−→ V(v,C(bv, b))

and these allow us to define “internal projections”

eb,v : C(a, bv)→ V(v,C(a, b))

given by

C(a, bv)
∼−→ 1V × C(a, bv)

εb,v×1−→ V(v,C(bv, b))× C(a, bv)
∼−→

V(v,C(bv, b))× V(1V,C(a, bv))
×−→ V(v × 1V,C(bv, b)× C(a, bv))

◦a,bv,b−→ V(v,C(a, b))

We say that a V-functor F : C → D preserves powers if for every b in C and v in V, the
V-natural transformations

F (eb,v) : D(−, F (bv))→ V(v,C(−, F (b)))

are the components of a V-natural isomorphism

D(−, F (bv)) ∼= V(v,D(−, F (b))),

and similarly for tensors.
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4. Enriched Lawvere Theories

Power introduced the notion of enriched Lawvere theory about twenty years ago, “in seeking a
general account of what have been called notions of computation” [30]. The original definition is
as follows: for a symmetric monoidal closed category (V,⊗, 1), a “V-enriched Lawvere theory” is a
V-category T that has powers by objects in Vf , equipped with an identity-on-objects V-functor

τ : Vop
f → T

that preserves these powers. A “model” of a V-theory is a V-functor µ : T → V that preserves
powers by finite objects of V. There is a category Mod(T,V) whose objects are models and whose
morphisms are V-natural transformations. However, this sort of V-enriched Lawvere theory has
arities for every finite object of V. In this paper, however, we only consider natural number arities,
while still retaining enrichment. To do this we use the work of Lucyshyn-Wright [20], who along
with Power [27] has generalized Power’s original ideas to allow a more flexible choice of arities. We
also limit ourselves to the case where the tensor product of V is cartesian. This has a significant
simplifying effect, yet it suffices for many cases of interest in computer science.

Thus, in all that follows, we let (V,×, 1V) be a cartesian closed category equipped with chosen
finite coproducts of the terminal object 1V, say

nV =
∑
i∈n

1V.

Define NV to be the full subcategory of V containing just these objects nV. There is also a V-
category NV whose objects are those of NV and whose hom-objects are given as in V. We define the
V-category of arities for V to be

AV := Nop
V .

We shall soon see that AV has finite V-products.

Definition 1. We define a V-theory (T, τ) to be a V-category T equipped with a V-functor

τ : AV → T

that is bijective on objects and preserves finite V-products.

Definition 2. A model of T in a V-category C is a V-functor

µ : T→ C

that preserves finite V-products.

Just as all the objects of a Lawvere theory are finite products of a single object, we shall see
that all the objects of T are finite V-products of the object

t = τ(1V).

Definition 3. For every V-theory (T, τ) and every V-category C with finite V-products, we define
Mod(T,C), the category of models of (T, τ) in C, to be the category for which an object is a
V-functor µ : T→ C that preserves finite V-products and a morphism is a V-natural transformation.

Definition 4. We define VLaw, the category of V-theories, to be the category for which an
object is a V-theory and a morphism from (T, τ) to (T′, τ ′) is a V-functor f : T→ T′ that preserves
finite V-products and has fτ = τ ′.
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Example 5. Enrichment generalizes operations in more ways than by weakening equations to
coherent isomorphisms. We can also use 2-theories to describe other structures that make sense
inside 2-categories, such as adjunctions.

For example, we may define a cartesian category X to be one equipped with right adjoints to the
diagonal ∆X : X → X × X and the unique functor !X : X → 1Cat. These right adjoints are a functor
m : X2 → X describing binary products in X and a functor e : 1→ X picking out the terminal object
in X. We can capture the fact that they are right adjoints by providing them with units and counits
and imposing the triangle equations. There is thus a 2-theory Th(Cart) whose models in Cat are
categories with chosen finite products. More generally a model of this 2-theory in any 2-category
C with finite products is called a cartesian object in C.

Th(Cart)

type X cartesian object

operations m : X2 → X product
e : 1→ X terminal element

rewrites 4 : idX =⇒ m ◦ ∆X unit of adjunction between m and ∆X

π : ∆X ◦m =⇒ idX2 counit of adjunction between m and ∆X

> : idX =⇒ e ◦ !X unit of adjunction between e and !X
ε : !X ◦ e =⇒ id1 counit of adjunction between e and !X

equations

∆X m

∆X ◦m ◦∆X ∆X m ◦∆X ◦m m

∆X◦4
1 4◦m 1

π◦∆X
m◦π

!X e

!X ◦ e ◦ !X !X e ◦ !X ◦ e e

!X◦>
1 >◦e 1

ε◦!X e◦ε

Again we write the equations as commutative diagrams, but this time commutative triangles of
2-morphisms in Th(Cart). These are the triangle equations that force m to be the right adjoint
of ∆X and e to be the right adjoint of !X. A model of Th(Cart) is a category with chosen binary
products and a chosen terminal object; morphisms in Mod(Th(Cart),Cat) are functors that strictly
preserve this extra structure.

In fact, if we let arities be finite categories, we would have Cat-theories of categories with finite
limits and colimits. However, for the purposes of this paper we are using only natural number
arities. This suffices for constructing Th(Cart) and also Th(CoCart), the theory of categories with
chosen binary coproducts and a chosen initial object. Various other kinds of categories—distributive
categories, rig categories, etc.—can also be expressed using Cat-theories with natural number arities.
This gives a systematic formalization of these categories, internalizes them to new contexts, and
allows for the generation of 2-monads that describe them.
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5. Natural Number Arities

Lemma 6. Let V be cartesian closed with chosen finite coproducts of the terminal object and let
T be a V-category. These conditions for a V-functor τ : AV → T are equivalent:

(1) (T, τ) is a V-theory,
(2) τ preserves finite V-products,
(3) τ preserves powers by objects of NV.

6. Change of Base

We now have the tools to formulate the main idea: a choice of enrichment for Lawvere theo-
ries corresponds to a choice of semantics, and changing enrichments corresponds to a change of
semantics. We propose a general framework in which one can translate between different forms of
semantics: small-step, big-step, full-step operational semantics, and denotational semantics.

Suppose that V and W are enriching categories of the sort we are considering: cartesian closed
categories equipped with chosen finite coproducts of the terminal object. Suppose F : V → W
preserves finite products. This induces a change of base functor F∗ : VCat → WCat [9] which
takes any V-category C and produces a W-category F∗(C) with the same objects but with

F∗(C)(a, b) := F (C(a, b))

for all objects a, b. Composition in F∗(C) is defined by

F (C(b, c))× F (C(a, b))
∼−→ F (C(b, c)× C(a, b))

F (◦a,b,c)−→ F (C(a, b)).

The identity-assigning morphisms are given by

1
∼−→ F (1)

F (ia)−→ F (C(a, b)).

Moreover, if f : C→ D ∈ VCat is a V-functor, there is a W-functor F∗(f) : F∗(C)→ F∗(D) that
on objects equals f and on hom-objects equals F (f). If α : f ⇒ g is a V-natural transformation
and c ∈ Ob(C), then we define F∗(α)c to be the composite

1
∼−→ F (1)

F (ia)−→ F (C(a, b)).

Thus, change of base actually gives a 2-functor from the 2-category of V-categories, V-functors and
V-natural transformations to the corresponding 2-category for W.

We now study how change of base affects theories and their models. We start by asking when a
functor F : V→W induces a change of base F∗ : VCat→WCat that “preserves enriched theories”.
That is, given a V-theory

τ : AV → T

we want to determine conditions for the base-changed functor

F∗(τ) : F∗(AV)→ F∗(T)

to induce a W-theory in a canonical way. Recall that we require V and W to be cartesian closed,
equipped with chosen finite coproducts of their terminal objects. We thus expect the following
conditions to be sufficient: F should be cartesian, and it should preserve the chosen finite coproducts
of the terminal object:

F (nV) = nW

for all n.
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Given these conditions there is a W-functor, in fact an isomorphism

F̃ : AW → F∗(AV).

On objects this maps nW to nV, and on hom-objects it is simply the identity from

AW(mW, nW) = nmW

W = (nm)W

to

F (AV(mV, nV)) = F (nmV

V ) = F ((nm)V) = (nm)W.

Using this we obtain a composite W-functor

AW
F̃−→ F∗(AV)

F∗(τV)−→ F∗(T).

This is a bijection on objects and preserves finite V-products because each of the factors has these
properties. It is thus a W-theory.

Theorem 7. Let V, W be cartesian closed categories with chosen finite coproducts of their terminal
objects, and let F : V→W be a cartesian functor that preserves these chosen coproducts. Then F
preserves enriched theories: that is, for every V-theory τV : AV → T, the W-functor

τW := F∗(τV) ◦ F̃ : AW → F∗(T)

is a W-theory. Moreover, F preserves models: for every model µ : T→ C of (T, τV), the W-functor
F∗(µ) : F∗(T)→ F∗(C) is a model of (F∗(T), τW).

Hence any cartesian functor that preserves chosen finite coproducts of the terminal object gives
a “change of semantics” — this is a simple, ubiquitous condition, which provides for a method of
translating formal languages between various “modes of operation”.

7. Applications

7.1. The SKI-combinator calculus. The problem of substitution was noticed early in the his-
tory of mathematical foundations, even before the λ-calculus, and so Moses Schönfinkel invented
combinatory logic [31], a basic form of logic without the red tape of variable binding, hence
without functions in the usual sense. The SKI-calculus is the “variable-free” representation of
the λ-calculus; λ-terms are translated via “abstraction elimination” into strings of combinators and
applications. This is a technique for programming languages to minimize the subtleties of variables.
A great introduction into the strange world of combinators is given by Smullyan [34].

The insight of Stay and Meredith [35] is that even though Lawvere theories have no variables,
through abstraction elimination a programming language can be made into an algebraic object.
When representing a computational calculus as a Gph-theory, the general rewrite rules are simply
edges in the hom-graphs tn → t, with the object t serving in place of the variable. Below is the
theory of the SKI-calculus:

Th(SKI)
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type t
term constructors S : 1→ t

K : 1→ t
I : 1→ t

(− −) : t2 → t
structural congruence n/a
rewrites σ : (((S −) =) ≡)⇒ ((− ≡) (= ≡))

κ : ((K −) =)⇒ −
ι : (I −)⇒ −

These rewrites are implicitly universally quantified; i.e. they apply to arbitrary subterms −,=,≡
without any variable binding involved, by using the cartesian structure of the category. (Here l, r
denote the unitors and τ the symmetry of the product.) They are simply edges with vertices:

(((S −) =) ≡) : t3 1× t3 t4 t3 t2 t

((− ≡) (= ≡)) : t3 t4 t4 t2 t

((K −) =): t2 1× t2 t3 t2 t

− : t2 t× 1 t

(I −) : t 1× t t2 t

− : t t

σ

l−1×t3 S×t3 (− −)×t2 (− −)×t (− −)

t2×∆ t×τ×t (− −)×(− −) (− −)

κ

l−1×t2 K×t2 (− −)×t (− −)

t×! r

ι

l−1 I×t (− −)

t

A model of this theory is a power-preserving Gph-functor µ : Th(SKI)→ Gph. This gives a graph
µ(t) of all terms and rewrites in the SKI-calculus as follows:

1 ∼= µ(1) µ(t) µ(t2) ∼= µ(t)2µ(S) µ((− −))

The images of the nullary operations S,K, I are distinguished vertices of the graph µ(t), because µ
preserves the terminal object which “points out” vertices. The image of the binary operation (− −)
gives for every pair of vertices (u, v) ∈ µ(t)2, through the isomorphism µ(t)2 ∼= µ(t2), a vertex (u v)
in µ(t) which is their application. In this way we get all possible terms (writing µ(S), µ(K), µ(I)
as S,K, I for simplicity):

((((S (K (I I))) S) . . . ).

The rewrites are transferred by the enrichment of the functor: rather than functions between hom-
sets, the morphism component of µ consists of graph homomorphisms between hom-graphs. So,

µ1,t : Th(SKI)(1, t)→ Gph(1, µ(t))

maps the “syntactic” graph of all closed terms and rewrites coherently into the “semantic” graph,
meaning a rewrite in the theory a⇒ b is sent to a rewrite in the model µ(a)⇒ µ(b).
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These rewrites in the image of µ are graph transformations, which are just like natural transforma-
tions of functors, without the commuting diagram: given two graph homomorphisms f, g : G→ H,
a graph transformation α : f ⇒ g is a function G0 → H1 which sends a vertex v ∈ G to an edge
α(v) with source f(v) and target g(v).

This is how µ realizes Th(SKI) as a graph of terms and rewrites: in the same way that a natural
transformation of two constant functors a⇒ b : 1→ C is a morphism a(1)→ b(1) in C, a rewrite of
closed terms a⇒ b : 1→ µ(t) corresponds to an edge in µ(t):

µ((I S)) • • µ(S)
µ(ι)

Finally, the fact that µ((− −)) is not just a function but a graph homomorphism means that
pairs of edges (rewrites) (a→ b, c→ d) are sent to rewrites (a b)→ (c d).

7.2. Change of base. Now we can succinctly characterize the transformation from small-step to
big-step operational semantics. From a simple sequence of functors, we can translate between
several important kinds of semantics for the SKI-calculus. For example, we have the following
computation:

(((S K) (I K)) S)

(((S K) K) S) ((K S) ((I K) S))

((K S) (K S)) S

σι

σι
ισ κσ

κσι
κισσ ι

κ

κ

The solid arrows are the one-step rewrites of the initial Gph-theory; applying FC∗ gives the dotted
composites, and FP∗ asserts that all composites between any two objects are equal. Finally, FS∗
collapses the whole diagram to S. This is a simple demonstration of the basic stages of computation:
small-step, big-step, full-step, and denotational semantics.

7.3. Bisimulation. This paper uses simple functors to illustrate the basic idea of changing seman-
tics. Of course, there are many interesting and useful change-of-base functors. As demonstrated,
any functor F : V→W which preserves finite products and finite coproducts of the terminal object
can be considered as a change in semantics. For example, if we enrich in labelled directed graphs,
we can utilize the important concept of bisimulation.

A labelled transition system consists of a set G, a label alphabet A, and a rewrite relation
→⊂ G×A×G, equivalently a graph labelled by elements of A. The elements of G represent terms
or processes, and the elements of A represent rewrite rules, in order to actually keep track of which

kinds of rewrites are being used in a computation. An element (p, a, q) is denoted p
a−→ q.

In particular, labelled transition systems allow for the correct definition of process equivalence.
A bisimilarity relation ≡⊂ G×G consists of pairs of processes (p, q), written p ≡ q, defined:

∀a ∈ A, p′, q′ ∈ G
(p

a−→ p′) implies (∃q′ ∈ G (q
a−→ q′) ∧ p′ ≡ q′)

(q
a−→ q′) implies (∃p′ ∈ G (p

a−→ p′) ∧ p′ ≡ q′)
Intuitively, this means that the processes p and q can always “match each other’s moves” as they
evolve. Then for all intents and purposes, these processes behave the same way, and hence should be
considered as operationally equivalent. The bisimulation on G is the largest bisimilarity relation
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which is also a congruence, meaning that processes are bisimilar iff they are so in every context, i.e.
when substituted into any one-hole term.

This concept, as well as the Calculus of Communicating Processes, were invented and demon-
strated by Milner [26]. The latter can be expressed as an LTS-theory. The category of labelled
transition systems is just like Gph, except of course we now keep track of labels. Morphisms in LTS,
operations in LTS-theories, and LTS-functors all preserve labels; for example, when we compose and
multiply rewrite rules, we retain this information by labelling with the actual denotation for that
composite/product. Modulo these details, V = LTS is exactly like the cases considered above.

Th(CCS)

types P processes
N actions
N coactions

operations 0: 1→ P nullity
τ : 1→ P internal action
| : P 2 → P parallel

+: P 2 → P choice
. : N × P → P input
. : N × P → P output

congruence (P, |, 0) commutative monoid
(P,+, 0) commutative monoid

rewrites tau : . ◦ (τ × P ) ◦ l−1 ⇒ idP (τ.P
tau−−→ P )

inter : | ◦ (.× .)⇒ | (a.P |a.Q react−−−→ P |Q)

The theory is summarized in the two rewrite rules: τ is an “unobservable” action, a process
evolving in a way that is private to the ambient context; inter is interaction or communication -
the action a is being triggered by the coaction a, they are used up and the sequential processes
continue in parallel. This calculus is the precursor to the π calculus [25], and is a very simple and
general framework for understanding systems of interacting automata.

There is an endofunctor B : LTS→ LTS which quotients by the bisimulation relation. It preserves
products, B(G×H) ∼= B(G)×B(H), because (p1, p2) ≡ (q1, q2) iff (p1 ≡ q1 and p2 ≡ q2). Thus we
can utilize base change to perform a very useful tranformation on our semantics: from Th(CCS), we
get a new theory B∗(Th(CCS)), the hom-LTS’s of which consist of bisimulation equivalence classes
of terms and rewrites in the calculus of communicating systems.
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[21] C. Lüth and N. Ghani, Monads and modular term rewriting, Category Theory and Computer Science (Santa

Margherita Ligure, 1997), Springer, Berlin, 1997, pp. 69–86. (Referred to on page .)
[22] S. Mac Lane, Categories for the Working Mathematician, Springer, Berlin, 1998. (Referred to on page .)

[23] L. G. Meredith and M. Radestock, A reflective higher-order calculus, Electronic Notes in Theoretical Computer

Science 141 (2005), 49–67. (Referred to on page .)
[24] B. Milewski, Category Theory for Programmers, Chap. 14: Lawvere theories, 2017. (Referred to on page .)

[25] R. Milner, The polyadic π-calculus: a tutorial, in Logic and Algebra of Specification, Springer, Berlin, 1993,

203–246. (Referred to on page .)
[26] R. Milner, Communicating and Mobile Systems: The Pi Calculus, in Cambridge University Press, Cambridge,

UK, 1999. (Referred to on page .)
[27] K. Nishizawa and J. Power, Lawvere theories enriched over a general base, J. Pure Appl. Algebra 213 (2009),

377–386. (Referred to on page .)

[28] G. D. Plotkin, A structural approach to operational semantics, J. Log. Algebr Program. 60/61 (2004) 17–139.
(Referred to on page .)

[29] M. Hyland and J. Power, Discrete Lawvere theories and computational effects, in Theoretical Comp. Sci. 366

(2006), 144–162. (Referred to on page .)
[30] J. Power, Enriched Lawvere theories, Theory Appl. Categ. 6(1999), 83–93. (Referred to on page .)
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